
International Journal of Theoretical Physics, Vol. 40, No. 1, 2001

Braided Identities, Quantum Groups, and
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A Lie algebra in a braided category is constructed within the algebra structure
of the positive part of the Drinfeld–Jimbo quantum group of type An such that
its universal enveloping algebra is a braided Hopf algebra. Similarities with
Clifford algebras are discussed.

1. INTRODUCTION

We are interested in the construction of a quantum Lie algebra (cf., e.g.,
Lyubashenko and Sudbery, 1998). The problem is the following: given a Lie
algebra g, we have to construct a deformed Lie algebra gq with a generalized
universal enveloping algebra U(gq) such that the following diagram
commutes:

q→1
gq —→ g

↓ ↓
q→1

U(gq) 5 Uq(g) —→ U(g)

where Uq(g) is the Drinfeld–Jimbo quantum group related to g and U(g) is
the universal enveloping algebra of g.

We propose a generalized Lie algebra in the case g 5 sl1
n11 (upper

triangular matrices) for which there hold a generalized antisymmetry property
and a generalized Jacobi identity. Similar structures appear in Gurevich
(1986), Woronowicz (1989), Wambst (1993), and Oziewicz et al. (1994).
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The algebra and coalgebra structure of the universal enveloping algebra of
our deformed Lie algebra are constructed in an analogous way to the classical
ones. The antipode map is induced by the existence of the generalized opposite
Lie algebra. We obtain a braided Hopf algebra structure on Uq(g) 5 U(gq).
Such a braid appear in Lusztig (1993). It is used as an auxiliary tool in order
to prove that the quantum Serre relations are compatible with the Hopf algebra
coproduct. However, here it is recognized as a part of a braided Hopf algebra.

2. BRAIDED IDENTITIES

If M, N, R are k-modules and f : M → N a linear morphism, we denote
f1 [ f ^ 1: M ^ R → N ^ R and f2 [ 1 ^ f : R ^ M → R ^ N.

Let A be an associative k-algebra with a multiplication m. Let s: A^2

→ A^2 be a linear morphism. Define f 5 m 2 ms: A^2 → A, f1, f2: A^3 →
A^2. The following identity holds:

m( f2 2 f1 1 f1s2 2 f2s1 1 f2s1s2 2 f1s2s1) 5 mm1(s1s2s1 2 s2s1s2)

(1)

The above identity is an analogy of the Jacobi identity for a bracket f. Such
a Jacobi identity will help us to extract a braided Lie algebra from the
Drinfeld–Jimbo quantum groups of type An.

Lemma 1. Let

sf1 5 f2s1s2 and sf2 5 f1s2s1 (2)

Then

f ( f2s2 2 f1s2 1 f1) 5 mm1(s1s2s1 2 s2s1s2) 1 mf1(1 2 s2
2) (3)

Another braided identity, linear in m, instead of quadratic as in Lemma
1, is given by Oziewicz and Różański (1994, p. 1084, Corollary 2.6).

There are more versions of (1). For instance, if f satisfies (2), s is an
invertible braid, s1s2s1 5 s2s1s2; then

f ( f2 2 f1 1 f1s21
2 ) 5 mf1(s21

2 2 s2) (4)

or if f satisfies (2) just over an element v P A^3 and s is a braid, then

f ( f2 2 f1)(v) 5 f2s1(v) 2 f1s2(v) (5)

Let A ^s A be a k-module A ^ A with the following product:

(a ^ b)(c ^ d ) 5 as(b ^ c)d (6)

Lemma 2. If

sm1 5 m2s1s2 (7)

sm2 5 m1s2s1 (8)
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then the product (6) is associative. If the unit 1 P A satisfies

∀a P A, s(1 ^ a) 5 a ^ 1, s(a ^ 1) 5 1 ^ a (9)

then 1 ^ 1 is the unit for (6).

3. BRAIDS ARISING FROM COMMUTATIVE
CONSTRUCTIONS

There are structures built on the flip x ^ y ° y ^ x, the Clifford algebras
and the Drinfeld–Jimbo quantum groups. While the latter is a Hopf algebra,
the former has no coalgebra map defined by means of primitives consistent
with the algebra structure. However, in both cases, they hide some braid
morphisms that enrich the theory. The Clifford algebras are generalized
braided Hopf algebras and the positive part of the Drinfeld–Jimbo quantum
groups is a genuine universal enveloping algebra of a braided Lie algebra,
and such a positive part is a braided Hopf algebra. The braided Hopf algebras
were introduced by Majid (1995).

3.1. Clifford Algebra as Braided Quantum Group

Definition 3. Let M be a k-module and f a bilinear form on M. The
Clifford algebra Cl(M, f ) is the k-algebra, with generators the elements of
M and relations

∀x, y P M, xy 1 yx 5 2f (x, y) (10)

Following –Durd-evich (1994, p. 151), define s: M^2 → M^2 by

s(x ^ y) 5 2y ^ x 2 f (x, y)1 ^ 1

s(x ^ 1) 5 1 ^ x, s(1 ^ x) 5 x ^ 1, ∀x, y P M

Then s satisfies the braid equation. We can extend s to the tensor algebra
M^ by equations (2) and (9). Then relations (10) hold for such an extension.
We induced a linear morphism s: Cl(M, f ) ^ Cl(M, f ) → Cl(M, f ) ^
Cl(M, f ) which is involutive, and satisfies equations (2) and (9) and the
braid equation.

Proposition 4. If f is symmetric, then the map M → Cl(M, f ) ^ Cl(M,
f ), x ° x ^ 1 11 ^ x can be extended to an algebra morphism

f : Cl(M, f ) → Cl(M, f ) ^s Cl(M, f )

–Durd-evich (1994) developed a counit and an antipode for braided Clif-
ford algebras, therefore, as a particular case for the classical Clifford algebra
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Cl(M, f ). But, because of the lack of multiplicativity of the counit, even in
Cl(M, f ), the obtained structure is not a braided Hopf algebra, but a more
general one called a braided quantum group (–Durd-evich, 1997; see also –Durd-

evich & Oziewicz, 1996; Oziewicz, 1997; –Durd-evich, 2001).
A Clifford algebra Cl(M, f ) is the universal enveloping algebra of a

generalized Abelian Lie algebra; see Example 11. Therefore a braided Jacobi
identity (1) for Cl(M, f ) is a tautology 0 5 0.

3.2. Drinfeld–Jimbo Quantum Groups of Type An Positive

We use the Drinfeld–Jimbo quantum groups in the Lusztig form. The
positive part of the Drinfeld–Jimbo quantum group of type An is the C[q, q21]-
algebra generated by E1 , . . . , En with relations Ei E 2

j 2 (q 1 q21)EjEi Ej 1
E 2

j Ei 5 0 if .i 2 j. 5 1 and EiEj 2 EjEi 5 0 if .i 2 j. . 1. This algebra is
denoted Uq(sl1

n11). If q 5 1, Uq(sl1
n11) collapses to U(sl1

n11), which is the uni-
versal enveloping algebra of sl1

n11, and Uq(sl1
n11) is not a Hopf algebra with

the usual coproduct of the whole quantum group Uq(sln11) because the
elements K61

i do not belong to Uq(sl1
n11). However, later, a braided Hopf

algebra structure will be constructed on Uq(sl1
n11).

Define inductively

Ei(i11) 5 Ei , i 5 1, . . . , n

Ei(i1k) 5 Ei(i1k21)E(i1k21)(i1k) 2 q21E(i1k21)(i1k)Ei(i1k21),

1 , k , n 1 1 2 i

It can be proven that the elements Eij, 1 # i , j # n 1 1, generate a braided
Lie algebra.

3.3. A Braided Lie Algebra of Type A3 Positive

Let Ln11 be the C[q, q21]-module with a free basis Eij, 1 # i , j #
n 1 1. Let cij,ab P Z be such that [[Eij, Eji], Eab] 5 cij,abEab and let [ , ] be
the usual bracket on sln11 (Lusztig, 1993, p. 3). Let a total order be given by

Eij , Eab if (i 1 j , a 1 b) or (i 1 j 5 a 1 b and j , b)

Define

s: Ln11 ^ Ln11 → Ln11 ^ Ln11

s(Eij ^ Eab) 5 qcij,abEab ^ Eij

The braid s is used in Lusztig (1993) as an auxiliary tool in order to
prove that the Drinfeld–Jimbo quantum group has a bialgebra structure. In
this work, s is used as a part of a braided Hopf algebra Uq(sl1

n11).
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Define [ , ]q: Ln11 ^ Ln11 → Ln11 by

[Eij, Eab]q 5 djaEib 2 qcij,abdbiEaj

^Eij, Eab& 5 H(q 2 q21)E23E14 if Eij 5 E34 and Eab 5 E14

0 otherwise

Proposition 5. The following relations hold within Uq(sl1
4 ):

Eij, Eab 2 qcij,abEabEij 5 [Eij, Eab]q 1 ^Eij, Eab& if Eij , Eab (11)

Proof. Using (5) for x 5 E12, y 5 E23, z 5 E34, and then for x 5 E13,
y 5 E23, z 5 E34, etc., we obtain (11) if Eij , Eab. n

This proposition can be generalized to any n. In addition, the relations
(11) suggest a generalized commutator, while (4) suggests a Jacobi identity
with an involutive switch.

4. GENERALIZED LIE ALGEBRAS AND GENERALIZED
UNIVERSAL ENVELOPING ALGEBRAS

Definition 6. A k-module L together with bracket [ , ]: L ^ L → L, a
pseudobracket ^ , &: L ^ L → L ^ L, and presymmetry S: L ^ L → L ^ L
is said to be a T-Lie algebra if the following conditions hold:

1. S2 5 1
2. [ , ]S 5 2 [ , ], ^ , &S 5 2^ , &, [ , ]^ , & 5 0
3. [ , ]([ , ]2 2 [ , ]1 1 [ , ]1S2) 5 0
4. If u P L3^ such that S1(u) Þ u, S2(u) Þ u and S2S1(u) Þ S2(u), then

S[ ,]1(u) 5 [ , ]2S1S2(u) and S[ , ]2(u) 5 [ , ]1S2S1(u).

Example 7. Let S: Ln11: ^ Ln11 → Ln11 ^ Ln11 be an involutive map
defined by

S(Eij ^ Eab) 5 qcij,ab ^ Eij if Eij , Eab

and let ^ , &: Ln11 ^ Ln11 → Ln11 ^ Ln11 be a k-module morphism defined
by, if Eij , Eab,

^Eij, Eab& 5 H(q 2 q21)Eaj ^ Eib if i , a , j and a, j , b
0 otherwise

and ^ , &S 5 2^ , &. Then Ln11 together with [ , ]q^ , &, and S is a T-Lie algebra.

Example 8. The quantum Lie algebras of Wambst (1993) with involutive
symmetry are T-Lie algebras.
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Definition 9. Let L be a T-Lie algebra. The universal enveloping algebra
U(L) of L is the factor k-algebra of the tensor algebra L^ by the two-sided
ideal generated by

x ^ y 2 S(x ^ y) 2 [x, y] 2 ^x, y&, x, y P L (12)

Similar generalized Lie algebras and universal enveloping algebras were
studied by Wambst (1993). The main difference with our point of view is
that in the generalized universal enveloping algebras defined by Wambst, the
additional term ^ , & in (12) is a bilinear form. By developing such a bilinear
form as in Example 11, the generalized universal enveloping algebras of
Wambst are a particular case of (12).

Example 10. Bautista (1998) proved that as k-algebras,

U(Ln11) . U 1
q (sln11)

Example 11. The Clifford algebras are universal enveloping algebras of
T-Lie algebras. Define M̃ 5 M % k, ^ , &: M̃ ^ M̃ → M̃ ^ M̃, ^x, y& 5 f (x, y)1
^ 1, ∀x, y P M̃, where f (1, 1) 5 f (x, 1) 5 f (1, x) 5 0, ∀x P M. Let S:
M̃ ^ M̃ → M̃ ^ M̃, S(x ^ y) 5 2y ^ x, S(x ^ 1) 5 1 ^ x, ∀x P M, S2 5
1 Then M̃ is a T-Lie algebra with presymmetry S, bracket [ , ] 5 0, and
pseudobracket ^ , &, and its universal enveloping algebra is a Clifford algebra,

U(M̃) . Cl(M, f )

5. QUANTIZED UNIVERSAL ENVELOPING ALGEBRAS AS
BRAIDED HOPF ALGEBRAS: THE CASE An

The presymmetry of the T-Lie algebra Ln11 preserves the defining rela-
tions of Uq(sl1

n11). Therefore, s can be extended to s: Uq(sl1
n11) ^

Uq(sl1
n11) → Uq(sl1

n11) ^ Uq(sl1
n11) satisfying (7) and (8) relative to the

multiplication map m of Uq(sl1
n11).

Proposition 12. The map f(Ei(i11)) 5 Ei(i11) ^ 1 1 1 ^ Ei(i11), 1 #
i # n, induces an algebra morphism f : Uq(sl1

n11) → Uq(sl1
n11) ^s

Uq(sl1
n11).

Proof. Direct computations show that the defining relations of
Uq(sl1

n11) are preserved. n

Since f is coassociative on the generators Ei , i 5 1, . . . , n, f is
coassociative on each element of Uq(sl1

n11).
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5.1. Counit

The antipode and the counit of f can be constructed in a similar way
to the classical Lie algebra case.

The commutative ring k is a T-Lie algebra in the obvious way and the
zero morphism 0: Ln11 → k is a morphism of T-Lie algebras; then e 5 U(0):
Uq(sl1

n11) → U(k) . k is a morphism of associative k-algebras.

Proposition 13. Let C 5 {E1, . . . , En}. Then

f(Ei1) . . . f(Eim) 5 Eim . . . Eim ^ 1 1 o
j

uj ^ vj

5 1 ^ Ei1 . . . Eim 1 o
l

al ^ bl

where each uj , vj , al , bl is a nonempty product of basic elements in C. It
follows that

(1 ^ e)f(Ei1) . . . f(Eim) 5 Ei1 . . . Eim 5 (e ^ 1)f(Ei1) . . . f(Eim)

Since C is a generator set of Uq(sl1
n11), we get that e is the counit for f.

5.2. Antipode

A fundamental concept in the Delius and Gould (1996) quantum Lie
algebra theory is q-conjugation. In this paper, we use a modified version of
q-conjugation.

Definition 14. The C-algebra automorphism C[q, q21] → C[q, q21], q °
q21 is called q-conjugation.

Let us fix the ring k as C[q, q21] and let L be Ln11 as a T-Lie algebra.

Definition 15. 1. The opposite T-Lie algebra Lop is the C[q, q21]-module
that coincides with L as a set, has module structure induced by change of
fields through q-conjugation, and has T-Lie algebra structure given by

[ , ]op 5 2[ , ]q , Sop 5 S21, ^ , &op 5 2^ , &

2. Let m be the product of U(L). The opposite algebra U(L)op is the
C[q, q21]-algebra that coincides with U(L) as a set, has C[q, q21]-module
structure induced by change of fields through q-conjugation

— ? —: C[q, q21] ^ U(L)op → U(L)op

and has product given by

mop 5 ms 5 — ∗ —: U(L)op ^ U(L)op → U(L)op

3. We denote by U(L)c a C[q, q21]-algebra obtained from U(L) by change
of fields through q-conjugation:
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— ? —: C[q, q21] ^ U(L)c → U(L)c

Proposition 16. There exists a C[q, q21]-algebra isomorphism

g: U(L) → U(L)c

such that q ° q21, Ei ° Ei , i, 5 1, . . . , n.

Proof. The relations

g(Ei)2g(Ej) 5 (q 1 q21) ? g(Ei)g(Ej)g(Ei) 1 g(Ej)g(Ei)2 if cij 5 21

g(Ei)g(Ej) 5 g(Ej)g(Ei) if cij 5 0

are the defining relations of Uq(sl1
n11). n

Definition 17. The set B 5 {Eij.1 # i , j # n 1 1} is called a canonical
basis of Ln11.

Proposition 18. Let L 5 Ln11.
1. The k-algebra U(L)op is associative and Lop is a basic T-Lie algebra.
2. The map h: L → Lop, x ° 2x is a T-Lie algebra morphism.
3. There exists an isomorphism of k-algebras,

U(Lop) . U(L)op

Proof.
1. The braid equation for s together with conditions (7) and (8) ensure

the associativity property of mop.
2. The following diagrams commute:

[,]q S
L ^ L —→ L L ^ L —→ L ^ L
h^h↓ ↓h h^h↓ ↓h^h

[,]op
q Sop

Lop ^ L —→ Lop Lop ^ Lop —→ Lop ^ Lop

^ , &
L ^ L —→ L ^ L

h^h↓ ↓h^h
^ , &op

Lop ^ Lop —→ Lop ^ Lop

3. Put s(x ^ y) 5 pxyy ^ x and S(x ^ y) 5 qxyy ^ x for any x, y
elements in the canonical basis B of L and where pxy, qxy, li P C[q, q21].
If x, y P B and x , y, the defining relations of U(L) can be written as

2(xy 2 pxyyx 2 [x, y] 2 ^x, y&)

5 pxyyx 2 p21
xy pxyxy 1 [x, y] 1 ^x, y&

5 x ∗ y 2 pxy ? y ∗ x 2 [x, y]op 2 ^x, y&op (13)
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This means: U(L)op is the algebra with defining relations (13), which are the
defining relations of U(Lop). n

Proposition 19. There exist a morphism of k-algebras

h: U(L) → U(L)op

such that h(x) 5 2x, ∀x P L.

Consider the quantum plane A2.0
q defined by the ring

A2.0
q 5 k^x, y&/^yx 2 qxy&

where k^x, y& means an associative algebra freely generated by x, y.
For positive integers i # m, we define by the equation in A2.0

q the numbers

1m
i 2

q

, (x 1 y)m 5 o
m

i50 1
m
i 2

q

xm2iyi

Lemma 20:

o
m

i50 1
m
i 2

q2
(21)iqi(i21) 5 0

Proof. See Jantzen (1996), p. 6, equation (4) and warning 0.4. n

Lemma 21. If i: U(L)op → U(L)c is the natural C[q, q121]-linear inclusion
and k 5 g21 C i C h, then:

1.

f(Ej)m 5 o
m

i50 1
m
i 2

q2
E m 2 i

j ^ E i
j, 1 # j # n

2.

(E n12i1
j1 ^ E i1

j1)(E
n22i2
j2 ^ E i2

j2) . . . (E nu2iu
ju ^ E iu

ju)

5 q(a,bcja jbia(nja2ib)E n12i1
j1 E n22i2

j2 . . . E nu2iu
ju ^ E i1

j1E
i2
j2 . . . E iu

ju

3.

(1 ^ k)(E n12i1
j1 E n22i2

j2 . . . E nu2iu
ju ^ E i1

j1E
i2
j2 . . . E iu

ju)

5 q(a,bcja jbiaibE n12i1
j1 E n22i2

j2 . . . E nu2iu
ju ^ h(E iu

ju) . . . h(E i1
j1)

4. For j 5 1, . . . , n,

h(E i
j) 5 (21)iqi(i21)E i

j

5. Denote by m the product of Uq(sl1
n11). If n1, . . . , nu are positive

integers, then
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m(1 ^ k)f(E n1
j1 . . . E nu

ju ) 5 0, 1 # j1, . . . , ju # n.

Proof. By straightforward computations. By example, define

c 5 o
a,b

cja jbia(nja 2 ib)

Then

m(1 ^ k)f(E n1
j1 . . . E nu

ju )

5 m(1 ^ h)f(Ej1)
n1 . . . f(Eju)

nu

5 o
n1,...,nu

i1,...,iu50 1
n1

i12
q2

??? 1nu

iu2
q2

qcm(E n12i1
j1 ??? E nu2iu

ju ^ h(E i1
j1 ??? E iu

ju))

5 o
n1,...,nu

i1,...,iu50 1
n1

i12
q2

??? 1nu

iu2
q2

q(a,bcja jbianjbE n12i1
j1 ??? E nu2iu

ju h(E iu
ju) ??? h(E i1

j1)

5 o
n1,...,nu21

i1,...,iu2150 1
n1

i12
q2

??? 1nu21

iu212q2
q(a,bcja jbianjbE n12i1

j1 ??? E nu212iu21
ju21

o
nu

iu50 1
nu

iu2
q2

(21)iuqiu(iu21)E nu
ju h(E iu21

ju21) . . . h(E i1
j1) 5 0 n

Proposition 22. Let i: U(L)op → U(L)c the natural C[q, q21]-linear
inclusion. Then, the C[q, q21]-linear morphism

k 5 g2 + i + h: U(L) → U(L)

is the antipode for the coproduct f.

Theorem 23. The C[q, q21]-algebra Uq(sl1
n11) with coproduct f, counit

e, and antipode k is a braided Hopf algebra.
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